夕夏小筑:优秀范文写作参考

个人总结| 实习报告| 年度总结| 安全生产总结| 学校教育总结| 医院工作总结| 公司部门总结| 工作总结范文|

搜索
分类 古诗手抄报黑板报教学设计学习计划国学经典生活常识

等差数列(精选12篇)

作者:鲑鱼史努比日期:2024-04-02人气:14

导读:等差数列(精选12篇)等差数列 篇1  教学目标 1.明确等差中的概念. 2.进一步熟练掌握等差数列的通项公式及推导公式 3.培养学生的应用意识. 教学重点 等差数列的性质的理解及应用 教学难点 灵活应用等差数列的定义及性质解决一些相关问题 教学方法 讲练相结合 教具准备 投影

等差数列(精选12篇)

等差数列 篇1

  教学目标                        1.明确等差中的概念.     2.进一步熟练掌握等差数列的通项公式及推导公式     3.培养学生的应用意识.     教学重点                    等差数列的性质的理解及应用     教学难点                    灵活应用等差数列的定义及性质解决一些相关问题     教学方法                        讲练相结合     教具准备                        投影片2张(内容见下面) 教学过程                        (i)复习回顾 师:首先回忆一下上节课所学主要内容: 1.  等差数列定义: (n≥2) 2.  等差数列通项公式: (n≥2) 推导公式: (ⅱ)讲授新课 师:先来看这样两个例题(放投影片1) 例1:在等差数列 中,已知 , ,求首项 与公差 例2:梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。1.  解:由题意可知 解之得 即这个数列的首项是-2,公差是3。 或由题意可得: 即:31=10+7d 可求得d=3,再由 求得1=-2 2.  解设 表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知: a1=33,  a12=110,n=12 ∴ ,即时10=33+11 解之得: 因此, 答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm. 师:[提问]如果在 与 中间插入一个数a,使 ,a, 成等差数列数列,那么a应满足什么条件? 生:由定义得a- = -a 即: 反之,若 ,则a- = -a 师:由此可可得: 成等差数列,若 ,a, 成等差数列,那么a叫做 与 的等差中项。 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13…中 5是否和风细雨的等差中项,1和9的等差中项。 9是7和11的等差中项,5和13的等差中项。 看来, 从而可得在一等差数列中,若m+n=p+q 则, 生:结合例子,熟练掌握此性质 师:再来看例3。(放投影片2) 生:思考例题 例3:已知数列的通项公式为: 分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。 解:取数列 中的任意相邻两项 与 (n≥2), 则: 它是一个与n无关的常数,所以 是等差数列。在 中令n=1,得: ,所以这个等差数列的首项是p=q,公差是p.看来,等差数列的通项公式可以表示为: ,其中 、 是常数。 (ⅲ)课堂练习 生:(口答) (书面练习) 师:给出答案 生:自评练习 (ⅳ)课时小结 师:本节主要概念:等差中项 另外,注意灵活应用等差数列定义及通项公式解决相关问题。 (ⅴ)课后作业 一、课本 二、1.预习内容     2.预习提纲:①等差数列的前n项和公式; ②等差数列前n项和的简单应用。 教学后记                 

等差数列 篇2

  教学目标

  1.理解等差数列的概念,把握等差数列的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判定一个数列是等差数列,了解等差中项的概念;

  (2)正确熟悉使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像熟悉等差数列的性质,能用图像与通项公式的关系解决某些问题.

  2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.

  3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透非凡与一般的辩证唯物主义观点.

  关于等差数列的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是等差数列的定义和对通项公式的熟悉与应用,等差数列是非凡的数列,定义恰恰是其非凡性、也是本质属性的准确反映和高度概括,准确把握定义是正确熟悉等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

  ②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作预备.假如学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

  ④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的外形相对应.

  ⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的爱好.

  ⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  等差数列通项公式的教学设计示例

  教学目标

  1.通过教与学的互动,使学生加深对等差数列通项公式的熟悉,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的爱好.

  教学重点,难点

  教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程

  一.复习提问

  前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

  等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知等差数列 中,首项 , 则公差

  (3)已知等差数列 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知等差数列 中, ,求 的值.

  (2)已知等差数列 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知等差数列 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知等差数列 中, 求 ; ; ; ;….

  类似的还有

  (4)已知等差数列 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判定?引出

  3.研究等差数列的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究等差数列前 项和的最值所做的预备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2)等差数列 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想熟悉等差数列通项公式;

  2. 用函数思想解决等差数列问题.

  四.板书设计

  等差数列通项公式1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究等差数列的单调性

  4. 研究项的符号

等差数列 篇3

  教学目标 

  1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

  (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

  2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

  3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

  ②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

  ④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

  ⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

  ⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  通项公式的教学设计示例

  教学目标 

  1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的兴趣.

  教学重点,难点

  教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程 

  一.复习提问

  前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

  的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知 中,首项 , 则公差

  (3)已知 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知 中, 求 ; ; ; ;….

  类似的还有

  (4)已知 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出

  3.研究的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究前 项和的最值所做的准备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2) 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想认识通项公式;

  2. 用函数思想解决问题.

  四.板书设计 

  通项公式  1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究的单调性

  4. 研究项的符号

等差数列 篇4

  教学目的:1.明确等差数列的定义,掌握等差数列的通项公式;    2.会解决知道 中的三个,求另外一个的问题           教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学过程: 一、复习引入:(课件第一页)   二、讲解新课:        1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。(课件第二页) ⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。 2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得:   (课件第二页) 第二通项公式             (课件第二页) 三、例题讲解 例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 例2 在等差数列 中,已知 , ,求 , , 例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。  小结:①这就是第二通项公式的变形,②几何特征,直线的斜率 例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3) 例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)    分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。 注:①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,… ②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q. ③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。 例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数.四、练习: 1.(1)求等差数列3,7,11,……的第4项与第10项. (2)求等差数列10,8,6,……的第20项. (3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. (4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{ }中,(1)已知 =10, =19,求 与d; 五、课后作业:习题3.2  1(2),(4)  2.(2), 3, 4,  5, 6 .  8.  9.

等差数列 篇5

  教学目标 

  1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

  (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

  2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

  3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

  ②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

  ④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

  ⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

  ⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  通项公式的教学设计示例

  教学目标 

  1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的兴趣.

  教学重点,难点

  教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程 

  一.复习提问

  前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

  的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知 中,首项 , 则公差

  (3)已知 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知 中, 求 ; ; ; ;….

  类似的还有

  (4)已知 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出

  3.研究的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究前 项和的最值所做的准备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2) 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想认识通项公式;

  2. 用函数思想解决问题.

  四.板书设计 

  通项公式  1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究的单调性

  4. 研究项的符号

等差数列 篇6

  教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:

  一、引导观察数列:4,5,6,7,8,9,10,……                         3,0,-3,-6,……                     , , , ,……                        12,9,6,3,……       特点:从第二项起,每一项与它的前一项的差是常数 — “等差”

  二、得出等差数列的定义:        注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称:   首项   公差 2.若   则该数列为常数列3.寻求等差数列的通项公式:                    由此归纳为     当 时  (成立)       注意:  1° 等差数列的通项公式是关于 的一次函数              2° 如果通项公式是关于 的一次函数,则该数列成ap          证明:若                 它是以 为首项, 为公差的ap。              3° 公式中若  则数列递增,  则数列递减  4° 图象: 一条直线上的一群孤立点三、例题: 注意在 中 , , , 四数中已知三个可以求           出另一个。例一 (见教材)例二 (见教材)

  四、关于等差中项: 如果 成等差数列则       证明:设公差为 ,则               ∴    例四  《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:           

等差数列 篇7

  教材:(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。过程:一、复习:等差数列的定义,通项公式    二、例一    在等差数列 中, 为公差,若 且 求证:1°     2°         证明:1°  设首项为 ,则∵   ∴ 2∵   ∴ 注意:由此可以证明一个定理:设成等差数列,则与首末两项距离相等的两项和等于首末两项的和 ,即:                    同样:若  则        例二  在等差数列 中,                 1° 若     求                 解:  即    ∴                2° 若  求           解: =                3° 若     求            解:   即    ∴                   从而                4° 若     求           解:∵ 6+6=11+1      7+7=12+2   ……                  ∴        ……                 从而 + 2                   ∴ =2 -                                                     =2×80-30=130  三、判断一个数列是否成等差数列的常用方法      1.定义法:即证明            已知数列 的前 项和 ,求证数列 成等差数列,并求其首项、公差、通项公式。                  解:                             当 时                           时 亦满足  ∴               首项                     ∴ 成等差数列且公差为6     2.中项法: 即利用中项公式,若  则 成等差数列。          已知 , , 成等差数列,求证 , , 也成ap。         证明: ∵ , , 成ap      ∴  化简得:                                                                                                                =                            ∴ , , 也成等差数列。         3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。            例五  设数列 其前 项和 ,问这个数列成ap吗?解: 时        时                   ∵    ∴                       ∴ 数列 不成ap   但从第2项起成等差数列。   四、小结: 略   五、作业:

等差数列 篇8

  教学目标 

  1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

  (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

  2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

  3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

  ②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

  ④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

  ⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

  ⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  通项公式的教学设计示例

  教学目标 

  1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的兴趣.

  教学重点,难点

  教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程 

  一.复习提问

  前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

  的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知 中,首项 , 则公差

  (3)已知 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知 中, 求 ; ; ; ;….

  类似的还有

  (4)已知 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出

  3.研究的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究前 项和的最值所做的准备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2) 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想认识通项公式;

  2. 用函数思想解决问题.

  四.板书设计 

  通项公式  1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究的单调性

  4. 研究项的符号

等差数列 篇9

  一、教材分析

  数列是刻画离散现象的函数,是一种重要的属性模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列。

  高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。

  在推导等差数列前n项和公式的过程中,采用了:

  1、从特殊到一般的研究方法;

  2、倒叙相加求和。不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。

  等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。

  二、目标分析

  (一)教学目标

  1、知识与技能

  掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。

  2、过程与方法

  经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

  3、情感、态度与价值观

  获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

  (二)教学重点、难点

  1、重点:等差数列的前n项和公式。

  2、难点:获得等差数列的前n项和公式推导的思路。

  三、教法学法分析

  (一)教法

  教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。

  探索与发现公式推导的思路是教学的重点。如果直接介绍“倒叙相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。

  应用公式也是教学的重点。为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。

  (二)学法

  建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

  四、教学过程分析

  (一)教学过程设计

  1、问题呈现阶段

  泰姬陵坐落于印度古都阿格,是世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成共有100层。你知道这个图案一共花了多少宝石吗?

  设计意图:

  (1)源于历史,富有人文气息。

  (2)承上启下,探讨高斯算法。

  2、探究发现阶段

  (1)学生叙述高斯首尾配对的方法(学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段。)

  (2)为了促进学生对这种算法的进一步理解,设计了下面的问题。

  问题1:图案中,第1层到第21层共有多少颗宝石?(这是奇数个项和的问题,不能简单模仿偶数个项求和的方法,需要把中间项11看成是首、尾两项1和21的等差中项。

  通过前后比较得出认识:高斯“首尾配对”的算法还得分奇数、偶数个项的情况求和。

  (3)进而提出有无简单的方法。

  借助几何图形的直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。

  获得算法:S21=

  设计意图:

  几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面,只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。

  问题2:求1到n的正整数之和。即Sn=1+2+3+…+n

  ∵Sn=n+(n—1)+(n—2)+…+1

  ∴2Sn=(n+1)+(n+1)+…。+(n+1)

  Sn=(从求确定的前n个正整数之和到求一般项数的前n个正整数之和,旨在让学生体验“倒叙相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进)

  由于前面的铺垫,学生容易得出如下过程:

  ∵Sn=an+an—1+an—2+…a1,

  ∴Sn=。

  图形直观

  等差数列的性质(如果m+n=p+q,那么am+an=ap+aq。)

  设计意图:

  一言以蔽之,数学教学应努力做到:以简驭繁,平实近人,退朴归真,循循善诱,引人入胜。

  3、公式应用阶段

  (1)选用公式

  公式1Sn=;

  公式2Sn=na1+。

  (2)变用公式

  (3)知三求二

  例1

  某长跑运动员7天里每天的训练量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。这位长跑运动员7天共跑了多少米?(本例提供了许多数据信息,学生可以从首项、尾项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式2求和。达到学生熟悉公式的要素与结构的教学目的。

  通过两种方法的比较,引导学生应该根据信息选择适当的公式,以便于计算。)

  例2

  等差数列—10,—6,—2,2,…的前多少项和为54?(本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。

  事实上,在两个求和公式中包含四个元素,从方程的角度,知三必能求余一。)

  变式练习:在等差数列{an}中,a1=20,an=54,Sn=999,求n。

  知三求二:

  例3

  在等差数列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差数列的求和公式和通项公式求未知元。

  事实上,在求和公式、通项公式中共有首项、公差、项数、尾项、前n项和五个元素,如果已知其中三个,连列方程组,就可以求出其余两个。)

  4、当堂训练,巩固深化。

  通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。

  采用课后习题1,2,3。

  5、小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

  (1)课堂小结

  ①、回顾从特殊到一般的研究方法;

  ②、体会等差数列的基本元素的表示方法,倒叙相加的算法,以及数形结合的数学思想。

  ③、掌握等差数列的两个球和公式及简单应用

  (2)反思

  我设计了三个问题

  ①、通过本节课的学习,你学到了哪些知识?

  ②、通过本节课的学习,你最大的体验是什么?

  ③、通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

  我设计了以下作业:

  1、必做题:课本p118,练习1,2,3;

  习题3.3第2题(3,4)。

  2、选做题:

  在等差数列中,

  (1)已知a2+a5+a12+a15=36,求是S16。

  (2)已知a6=20,求s11。

  (三)板书设计

  板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

  以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

等差数列 篇10

  一、下面先说说教材

  1、教材的地位和作用

  中职数学是中等职业学校各类专业学生必修的主要文化基础课,学好这门课程对提高学生数学素养具有十分重要的意义。数列这一章是中职数学的重要内容之一。它不仅是函数知识的延伸,而且还有着非常广泛的实际应用;同时数列还是培养学生数学思维能力的良好题材。

  《等差数列的前n项和》是本章的第二节,它为后继学习提供了知识基础,对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

  《等差数列》作为《数列》这一章中两个最重要的数列之一,具有承上启下的作用,它的研究和解决集中体现了研究《数列》问题的思想和方法。学习《等差数列的前n项和》对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

  2、教学目标根据教学大纲的要求和教学内容的结构特征,并结合学生学习的实际情况,我将本节课的教学目标确定为以下三个方面

  知识目标:掌握等差数列的前n项和公式

  能力目标:1、培养学生观察、归纳、类比、联想等发现规律的一般方法。

  2、提高学生分析问题和解决问题的能力

  情感目标:1、培养学生主动探索的精神和良好的学习习惯

  2、让学生在问题中感受学习的乐趣;

  3、教学重点和难点。根据本节课的内容以及学生已掌握的知识情况我将

  教学重点确定为:等差数列的前n项和公式及应用

  教学难点确定为:应用等差数列解决有关问题

  二、说教法学法

  教法教学有法但教无定法,教学方法要与学生学习的实际情况相结合。

  中职学生的生源质量逐年下降,大部分中职生基础薄弱、理解接受能力较差,大多数学生不爱学习,不会学习。学生认为数学难,枯燥理解不了。对数学学习提不起兴趣,因此在教学中我注重激发学生学习的兴趣。本节课通过具体的实例引入,采用了问题、类比、发现、归纳的探究式教学方法。引导学生积极主动的去学习。在课堂教学中强调以学生为主体,注重精讲多练。同时也注重学生非智力因素的培养,增强学生的自信心和成就感。为学习营造宽松和谐的氛围。另外在教学中使用多媒体教学手段等,提高教学质量和教学效果。

  学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。倡导学生主动参与、乐于探究,培养学生发现问题、分析问题和解决问题的能力。根据学生的认知水平,我设计了:

  ①创设情境—引入问题

  ②分析归纳—解决问题

  ③例题研究—运用新知

  ④分组训练—巩固新知

  ⑤总结归纳—提高认识

  ⑥课后作业—自主探究

  六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

  接下来,我再具体谈一谈这堂课的教学过程。

  三、说教学过程

  (一)创设情境——引入问题教学设想

  我经常在想:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中的实例一招聘信息引入:A公司月薪20__元;B公司第一个月800元,以后逐月递加200元。你愿意到哪家公司上班?为什么?在A、B公司一年各共领多少钱?五年呢?以此来激发学生的学习兴趣。再给学生讲数学家高斯的故事

  1+2+3+…+100=

  同学们,如果你是小高斯,你会怎么向老师解释算法呢?

  (二)分析归纳——解决问题教学设想

  由高斯的解题过程:

  S= 1+2+3+…+100

  S= 100+99+98+…+1

  2S=(100+1)×100

  S=(100+1)100/2=5050

  让学生在在教师的启发引导下,由被动地听讲变为主动参与,敢于发表自己独特的见解,并学会倾听、尊重他人的意见。教师引导学生概括总结出本课新的知识点。

  1、等差数列前n项求和公式

  类似m+n=s+t am+an=as+at m,n,s,t∈N+

  等差求和

  倒排相加

  另有

  即(2)——类似梯形面积公式便于记忆

  进而让学生解决课前提出的问题

  一年在A公司12×20__

  在B公司

  800+900+1000+…1900

  五年在A公司20__×12×5

  在B公司

  800+900+1000+…+6700

  ——让学生利用刚学的知识解决当前的问题,让学生明白学以致用。

  (三)例题研究——运用新知教学设想

  通过例题,使学生加深对知识的理解,从而达到掌握、运用知识的效果

  例1、(1)求正奇数前100项之和;

  (2)求第101个正奇数到第150个正奇数之和;

  (3)等差数列的通项公式为an=100-3n,求其前65项之和;

  (4)在等差数列{an}中,已知a1=3,,求S10

  例2、某长跑运动员7天每天的训练量(单位:m)分别是7500,8000,8500,9000,9500,10000,10500,他在7天内共跑了多少米?

  例3、设等差数列{an}的公差d=,前n项之和Sn=。求a1及n

  课堂上让学生用两种公式解题,有利于提高思维的灵活性,通过板演调动学生的积极性,也掌握本节课的重点和难点。

  (四)分组训练—巩固新知

  教学设想,例题过后,我特地设计了一组检测题,

  1、等差数列求和公式Sn=

  2、等差数列{an}中,(1)a1=2,d=-1则Sn=

  3、2c+4c+6c+…+2nc=

  4、一堆圆木,每层总比上一层多一根,顶层4根,最底层21根,这堆木料有多少根?

  5、一只挂钟,遇整点就敲响,钟响的次数是该点的时间数,从1点到12点共响几次?

  通过游戏比赛的形式,活跃课堂气氛,提高学生的学习兴趣。来巩固新知识。

  (五)总结归纳——提高认识教学设想

  让学生通过所学内容的小结,对知识的发生发展有一个清晰的线索,把课堂所学知识构建起新的知识体系。同时养成良好的学习习惯。

  (六)课后作业自主探究

  教学设想

  学生经过以上五个环节的学习,已经初步掌握了等差数列的前n项的求和,并解决了一些实际问题。

  根据学生在课堂上知识掌握的情况有针对性布置课后作业。提高学生应用知识的能力。

  四、说板书设计

  我将这节课的板书设计为三列,一列为本节课的基本知识点,一列为例题,一列为讲解。条理清晰,一目了然。我认为板书设计在课堂教学中也很重要,好的板书就是一份微型教案,向学生展现了所学知识的框架,突出重点难点,清晰直观地将授课内容传递给学生,便于学生理解掌握。

  五、说教学反思

  根据课堂教学情况,课后及时总结,不断改进,精益求精,努力提高课堂教学效果。

  结束:以上是我说课的内容,不当之处希望各位评委老师提出宝贵意见。

等差数列 篇11

  教学目标 

  1.掌握等差数列前 项和的公式,并能运用公式解决简单的问题.

  (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式;

  (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

  (3)会利用等差数列通项公式与前 项和的公式研究 的最值.

  2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

  3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

  4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

  教学建议

  (1)知识结构

  本节内容是等差数列前 项和公式的推导和应用,首先通过具体的例子给出了求等差数列前 项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

  (2)重点、难点分析

  教学重点是等差数列前 项和公式的推导和应用,难点是公式推导的思路.

  推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前 项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前 项和公式与通项公式的综合运用体现了方程(组)思想.

  高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

  (3)教法建议

  ①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前 项和公式综合运用.

  ②前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

  ③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

  ④补充等差数列前 项和的最大值、最小值问题.

  ⑤用梯形面积公式记忆等差数列前 项和公式.

  等差数列的前项和公式教学设计示例

  教学目标 

  1.通过教学使学生理解等差数列的前 项和公式的推导过程,并能用公式解决简单的问题.

  2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

  教学重点,难点

  教学重点是等差数列的前 项和公式的推导和应用,难点是获得推导公式的思路.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  讲授法.

  教学过程 

  一.新课引入

  提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展示)

  问题就是(板书)“ ”

  这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

  我们希望求一般的等差数列的和,高斯算法对我们有何启发?

  二.讲解新课

  (板书)等差数列前 项和公式

  1.公式推导(板书)

  问题(幻灯片):设等差数列 的首项为 ,公差为 , 由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

  思路一:运用基本量思想,将各项用 和 表示,得

  ,有以下等式

  ,问题是一共有多少个 ,似乎与 的奇偶有关.这个思路似乎进行不下去了.

  思路二:

  上面的等式其实就是 ,为回避个数问题,做一个改写 , ,两式左右分别相加,得

  ,

  于是有: .这就是倒序相加法.

  思路三:受思路二的启发,重新调整思路一,可得 ,于是 .

  于是得到了两个公式(投影片): 和 .

  2.公式记忆

  用梯形面积公式记忆等差数列前 项和公式,这里对图形进行了割、补两种处理,对应着等差数列前 项和的两个公式.

  3.公式的应用

  公式中含有四个量,运用方程的思想,知三求一.

  例1.求和:(1) ;

  (2) (结果用 表示)

  解题的关键是数清项数,小结数项数的方法.

  例2.等差数列 中前多少项的和是9900?

  本题实质是反用公式,解一个关于 的一元二次函数,注意得到的项数 必须是正整数.

  三.小结

  1.推导等差数列前 项和公式的思路;

  2.公式的应用中的数学思想.

  四.板书设计 

等差数列 篇12

  教学目标  1.熟练运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题.  2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力.3.用类比思想加深对等差数列与等比数列概念和性质的理解.教学重点与难点  1.用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式.  2.等差数列与等比数列的综合应用.例1已知两个等差数列5,8,11,…和3,7,11…都有100项,问它们有多少公共项.例2 已知数列{an}的前n 项和 ,求数列{|an|}的前n项和tn.例3已知公差不为零的等差数列{an}和等比数例{bn}中,a1=b1=1,a2=b2,a8=b3,试问:是否存在常数a,b,使得对于一切自然数n,都有an=logabn+b成立.若存在,求出a,b的值,若不存在,请说明理由.  例4已知数列{an}是公差不为零的等差数列,数列{akn}是公比为q的等比数列,且k1=1,k2=5,k3=17,求k1+k2+k3+…+kn的值.  例5、 已知函数f(x)=2x-2-x ,数列{an}满足f( )= -2n (1)求{an}的通项公式。 (2)证明{an}是递减数列。 例6、在数列{an}中,an>0,  = an+1 (n n) 求sn和an的表达式。 例7.已知数列{an}的通项公式为an= .求证:对于任意的正整数n,均有a2n─1,a2n,a2n+1成等比数列,而a2n,a2n+1,a2n+2成等差数列。例8.项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项及项数。作业  1  公差不为零的等差数列的第2,第3,第6项依次成等比数列,则公比是(    ).  (a)1     (b)2       (c)3       (d)4  2  若等差数列{an}的首项为a1=1,等比数列{bn},把这两个数列对应项相加所得的新数列{an+bn}的前三项为3,12,33,则{an}的公差为{bn}的公比之和为(   ).  (a)-5     (b)7       (c)9       (d)14  3 已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则 的值是 .  4   在等差数列{an}中,a1,a4,a25依次成等比数列,且a1+a4+a25=114,求成等比数列的这三个数.  5  设数列{an}是首项为1的等差数列,数列{bn}是首项为1的等比数列,又cn=an-bn(n∈n+),已知 试求数列{cn}的通项公式与前n项和公式.

Copyright © 2024-2025 夕夏小筑 版权所有 | 备案号:豫ICP备2024057237号-1

声明: 本站文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告